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Abstract

We study the explosive expansion near the boundary of the large solutions of the equation

−∆pu+ um = f in Ω

where Ω is an open bounded set of RN, N > 1, with adequately smooth boundary, m > p− 1 > 0 and f
is a continuous nonnegative function in Ω. Roughly speaking, we show that the number of explosive terms
in the asymptotic boundary expansion of the solution is finite, but it goes to infinity as m goes to p−1. For
illustrative choices of the sources, we prove that the expansion consists of two possible geometrical and
non–geometrical parts. For low explosive sources the non–geometrical part does not exist, all coefficients
depend on the diffusion and the geometry of the domain. For high explosive sources there are coefficients,
relative to the non–geometrical part, independent on Ω and the diffusion. In this case, the geometrical
part can not exist and we say then that the source is very high explosive. We emphasize that low or
high explosive sources can cause different geometrical properties in the expansion for a given interior
structure of the differential operator. This paper is strongly motivated by the applications, in particular by
the non-Newtonian fluid theory where p ̸= 2 involves rheological properties of the medium.

1 Introduction
This paper deals with the asymptotic behavior of solutions of the equation

− div(|∇u|p−2∇u) + um = f in Ω (1)

where Ω is a bounded domain in RN, N > 1, f ∈ C(Ω), m > 0 and p > 1. As it is usual, we denote by
−∆p the leading part of the differential operator. More precisely, our interest is focussed on the solutions
with an explosive behavior at the boundary

u(x) → ∞ as x → ∂Ω, (2)

usually called large (explosive, boundary blow-up) solutions. A strong motivation of the paper is based on
the applications where the values p ̸= 2 have a capital role (see below).

As it is well known for the homogeneous case, f ≡ 0, the large solutions have been studied for several
authors provided the extended Keller–Osserman condition

m > p− 1 (3)
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(see, for instance, [11] or [21]). An extensive amount of references, mainly for the uniformly elliptic case
p = 2, is collected in monograph [22] (see also [5] and [6]). Our main comments, in this paper, deal
preferably with the general case governed by the nonlinear leading part corresponding to p ̸= 2, strongly
motivated by the applications. From the mathematical point of view, the main difference with the linear case
is that the differential operator is not uniformly elliptic: degenerate for p > 2 and singular for 1 < p < 2.
From the applications point of view, a main difficulty appears: we must know the precise dependence on p
in the boundary behavior of solutions which cannot be deduced from the case p = 2 by a simple way. A
first study of problem (1)–(2) was made in [11] where existence, uniqueness and blow up rate of solutions
for certain functions f ≥ 0 were proved, under assumption (3) (see also [18, 21], where the previous results
were extended to more general nonlinearities in case f ≡ 0). We note that these well known results show
that the first term of the expansion near the boundary of large solutions is uniform and independent on the
geometry of ∂Ω (see again [11] and [21] as well as [13] and the references therein). To the best of our
knowledge, we do not know any work on the study the influence of the geometry of the domain on large
solutions of (1) when f ̸≡ 0. Then, an interesting question is to know how non–homogeneous sources and
the geometry of the domain can influence in the asymptotic expansion near the boundary of solutions of
(1)–(2).

We recall that for p = 2 and f ≡ 0 the dependence on the geometry is known from the pioneer work [8]
or from [1, 3, 4, 5, 6, 7, 17], for instance. In these works one proves that the geometrical influence appears
from the second order term of the explosive expansion. Our extensions are nontrivial due to the nonlinear
nature of the operator with p ̸= 2. Moreover, as in [1], the influence of non–null sources provides a more
deep knowledge of the nature of the explosiveness properties of the solutions. We note that large solutions
under non–null sources have been also studied in [20], [23] or [24] with different purposes.

As it is usual, the properties near the boundary employ the distance function dist(x, ∂Ω), here denoted
by d(x). As it is well known, if the boundary is bounded with ∂Ω ∈ Ck, k ≥ 1, it follows from [15] the
existence of a positive constant δ0, depending only on ∂Ω, such that d(·) ∈ Ck in the parallel strip near the
boundary

Ωδ0 = {x ∈ Ω : d(x) < δ0}. (4)

Moreover, from the results of [15], also can be deduced the important properties for x ∈ Ωδ0 as

|∇d(x)| ≡ 1 and ∆d(x) = −(N− 1)H(x̄(x)) + o(1),

where x̄(x) is a point on ∂Ω such that |x − x̄(x)| = d(x) and H(x̄(x)) denotes the mean curvature of ∂Ω
at x̄(x). The simplest geometry occurs on balls, as Ω = BR(0), for which

∆d(x) = −N− 1

|x|
, |x| < R.

These geometrical properties of the domain can to take part in the asymptotic expansion near the boundary.
Indeed this influence occurs on secondary terms under more regularity assumptions on the boundary. It
is obtained by considering terms containing the mean curvature neglected in the leading coefficient of the
expansion.

We emphasize that the existence of large solutions of (1), for f ≡ 0, is based on the Keller–Osserman
condition. This inequality is also a necessary assumption in the non–homogeneous case f ̸≡ 0. In order to
simplify, the main goal of this paper is to study the influence of sources with the property

f(x) ≈ f0
(
d(x)

)−ατm as d(x) → 0, f ≥ 0,

where
ατ =

p+ τ

m− p+ 1
(τ is a non–negative integer) (5)

(we note that, by construction, f0 ≥ 0). As we comment below, we say that the source causes a low
explosion if τ = 0, and the source causes a high explosion if τ > 0 and f0 > 0. More precisely, in this
paper we consider continuous and nonnegative sources satisfying

f(x) =
(
d(x)

)−ατm
(
f0 +

Mτ∑
n=1

fn
(
d(x)

)n)
, x ∈ Ωδ0 , (6)
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where fn, 1 ≤ n ≤ Mτ , are known constants and

Mτ =

{
ατ − 1 if ατ is a positive integer number,

[ατ ] otherwise,
(7)

for which
−ατ + n < 0, 1 ≤ n < Mτ , and − 1 ≤ −ατ +Mτ < 0.

The key of our contributions is based on the construction of a suitable explosive profile given by a master
function as

V(x) = C0

(
d(x)

)−ατ

(
1 +

Mτ∑
n=1

Cn(x)(d(x))
n

)
. (8)

Certainly, V(x) consists of a sum with Mτ + 1 summands containing all explosive terms. As it will be
proved later, when 2p+ τ − 1 ≤ m the expansion is very simple, it consists of a unique explosive term (see
Lemma 1 in Section 2 below). Furthermore, one has

lim
m→p−1

Mτ = ∞.

Preferably, we deal with the condition p− 1 < m < 2p+ τ − 1. In both cases, we prove in Section 2

Theorem 1 Let us consider f ∈ C(Ω), f ≥ 0 on Ωδ0 , verifying (6) with

f0 > 0 when τ > 0. (9)

We also assume (3) and ∂Ω ∈ C2(Mτ+1). Then for coefficients C0,C1, . . . ,CMτ given in (39) below, the
profile function V(x) defined in (8) satisfies the boundary behavior

−∆pV(x) +
(
V(x)

)m − f(x) =
(
d(x)

)−ατm
O
(
d(x)1+Mτ

)
. (10)

On the other hand, as it will be proved in Section 3, suitable reasonings on the magnitudes of approximations
of V(x) and a Comparison Principle lead to our main result

Theorem 2 Under the assumptions of Theorem 1 with f ≥ 0 in Ω, the explosive boundary expansion of
the large solution of (1) has the property

u(x) = V(x) + o

((
d(x)

)−ατ+Mτ

)
.

Certainly, sharp computations are required in the proof of Theorem 1. In Remark 6 we have summarized
the obtainment of the coefficients. In short, we comment some illustrative properties of the profile V(x)
transferred from the coefficients, as it will be detailed in Section 2. First of all, the main term of the
expansion

C0

(
d(x)

)−ατ
(τ ≥ 0)

is always governed by a positive coefficient whose dependence on the geometry is based on the norm of the
gradient of the distance function. Since |∇d(x)| ≡ 1 near the boundary ∂Ω, this dependence is universal,
thus it is independent of the specific geometry of Ω (see (28) or Remark 4). Furthermore, whenever 2p −
1 + τ ≤ m, the explosive profile function is exactly

V(x) = C0

(
d(x)

)−ατ
,

while inequality p − 1 < m < 2p − 1 + τ determines two possible summands in the expansion deduced
from the decomposition

V(x) = C0

(
d(x)

)−ατ

(
1 +

min{τ,Mτ}∑
n=1

Cn(d(x))
n +

Mτ∑
n=min{τ,Mτ}+1

Cn(x)(d(x))
n

)
.
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1. Low explosion (τ = 0) The profile function V(x) is

V(x) = C0

(
d(x)

)−α0

(
1 +

M0∑
n=1

Cn(x)(d(x))
n

︸ ︷︷ ︸
the geometrical part

)
,

where Cn ∈ C2(M0−n)(Ωδ0/2), 1 ≤ n ≤ M0, are the functions obtained through (38) depending on the
geometry.
2. High explosion (τ > 0) Here the profile function always contains a part, independent on the geometry,
with a high blow up. Possibly, it also may contain a part where the blow up is more weak. In some sense,
the dependence on the geometry provides low explosion due to the influence of the nonlinear diffusion of
the differential operator. This influence is neglected whenever the explosion is high. More precisely:
i) For 0 < τ ≤ Mτ the representation becomes

V(x) = C0

(
d(x)

)−ατ

(
1 +

the non–geometrical part︷ ︸︸ ︷
τ∑

n=1

Cn(d(x))
n +

Mτ∑
n=τ+1

Cn(x)(d(x))
n

︸ ︷︷ ︸
the geometrical part

)
.

Here Cn, 1 ≤ n ≤ τ , are constants independent on the geometry given by (31) and (34). Now (37) enables
to obtain the coefficients Cn ∈ C2(Mτ−n)(Ωδ0/2), τ + 1 ≤ n ≤ Mτ , that are functions depending on the
geometry.
ii) If 0 < Mτ < τ all coefficients in the expansion are independent on the geometry. Therefore one has

V(x) = C0

(
d(x)

)−ατ

(
1 +

the non–geometrical part︷ ︸︸ ︷
Mτ∑
n=1

Cn(d(x))
n

)
.

Here the last coefficient CMτ is given by (33). We say that this case corresponds to a very high explosion.

It is clear that in the simple case Ω = BR(0) the geometrical part is uniform on ∂Ω and consequently
the expansion is uniform on ∂Ω. In general, we may illustrate the results by noting that for two boundary
points x0, y0 ∈ ∂Ω if ∣∣Cn

(
x0 − s−→n x0

)
− Cn

(
y0 − s−→n y0

)∣∣ → 0 as s → 0

is satisfied for τ + 1 ≤ n ≤ Mτ , then we deduce∣∣u (x0 − s−→n x0

)
− u

(
y0 − s−→n y0

)∣∣ → 0 as s → 0;

otherwise ∣∣u (x0 − s−→n x0

)
− u

(
y0 − s−→n y0

)∣∣ → ∞ as s → 0

(here −→n x0 and −→n y0 denote the relative unit outward vector).
We emphasize that the geometrical properties derived from a given interior structure

−∆pu+ um in Ω

can change strongly under low or high explosive sources. For instance, under low explosive sources the sec-
ond coefficient of the explosive expansion of the large solutions is the first one dependent on the geometry;
however by changing to a high explosive sources the first presence of the geometry is displaced to lower
terms. Even, if we change to a very high explosive source the influence of the geometry disappears in the
explosive expansion. A technical reason is given in Remark 7 (see also the last comments in the Example 2
ii) at the end of Section 3).
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The couple of papers [17] and [18] is a good example of results for the Laplacian operator extended to
p-Laplacian operator. A first motivation to extend our results of p = 2 to arbitrary p > 1 is based on the
applications. As it well known (see [12]), among other applications including image processing and mean
curvature flow, the p-Laplacian operator appears for instance in the variant of the Navier-Stokes equation
that describes the motion of non-Newtonian fluids where the velocity gradient depends on the stress tensor
as it occurs for instance in glaceology, rheology, nonlinear elasticity and flow through a porous medium.
In particular, in studying the laws of motion of fluid media, the shear stress is given by τ = µ∇u. This
approximation is only available to some fluids not including dispersive media. For non–Newtonian fluids,
considered in Rheology, the power rheological law is τ = µ|∇u|p−2∇u, where µ and p involve rheological
properties of the medium. Here p has a very important role: p > 2 says that the medium is a dilatant fluid
and p < 2 that the medium is pseudoplastic (see [19]). In particular, the knowledge of the case p ̸= 2 is
very important in the transition p → 2 of the behavior from non–Newtonian fluids to Newtonian fluids,
mainly for some kind of free boundary phenomena arising when p ̸= 2 (see [10] for details).
A second motivation deals with the convergence p → ∞. Very important results were obtained in [14] and
[16]. Essentially, in [14] one proves that if p−1m(p) → Q ∈]1,∞[, as p → ∞, the large solutions of (1),
with f ≡ 0, converge uniformly on compacts subsets to a large viscosity solution of max{−∆∞u,−|∇u|+
uQ} = 0. If Q = 1 the solutions go to ∞ and when Q = ∞ the solutions converge to 1. In [2] we
complete this convergence whenever non null source terms govern the equation, moreover give a precise
approximation to the large solutions of −∆∞u+β(u) = f not included in [14]. The boundary behavior of
the large solution of this fully nonlinear equations was obtained in [9]. We also use a suitable modification
of the p-Laplacian operator in order to go to ∞-Laplacian operator.

The paper is organized as follows. In Section 2 we construct formal boundary explosive expansions
by using several awful straightforward computations. It requires classical explicit expressions as the old
formula of Federico Villarreal (1850–1923) on the power of polynomials. These formulas are summarized
in a short Appendix (see [1, Appendices A and B] for details). In Section 3 the formal expansions are
applied in order to obtain the whole boundary explosive expansion of the large solution of (1). We include
in that Section the Examples 1 and 2 in order to illustrate the main contributions of this paper.

2 The main properties of the boundary profile function
As it was pointed out in the introduction, we devote this Section to construct a profile boundary function

of type

V(x) = C0

(
d(x)

)−ατ

(
1 +

Mτ∑
n=1

Cn(x)
(
d(x)

)n)
, x ∈ Ωδ0/2, (11)

where ατ , Mτ and Ωδ0 are given in (5), (7) and (4), respectively. The coefficients C0 and Cn(x) will be
chosen later (see (27) below).

First we relate Mτ with the values of m, p and τ as follows

Lemma 1 Consider the intervals I0 = [2p+ τ − 1,∞[ and

Ik
.
=

[
(k + 1)(p− 1) + p+ τ

k + 1
,
k(p− 1) + p+ τ

k

[
,

where k is a positive integer. Then the disjoint covering

]p− 1,∞[ =

∞∪
k=0

Ik, (12)

holds. In particular, for the choice k = Mτ defined in (7), one has

m ∈ IMτ . (13)

PROOF. The covering (12) is obtained by a simple and direct checking. On the other hand, by definition
of Mτ , one has the inequality ατ − 1 ≤ Mτ < ατ that is equivalent to (13). 2
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Now we construct the framework on which we will prove the importat boundary property

−∆pV(x) +
(
V(x)

)m − f(x) =
(
d(x)

)−ατm
O
(
d(x)1+Mτ

)
(see (10) in Theorem 1). Two previous lemmas (Lemma 2 and Lemma 3) are proved in order to explain the
nature of the expansion of the quasilinear expression

−∆pV(x) +
(
V(x)

)m
. (14)

Lemma 2 Let us assume Cn ∈ C(Ωδ0/2). Then there exist adequate functions Dn ∈ C(Ωδ0/2) for which
the mth–power of the profile function admits the expansion

(
V(x)

)m
= Cm

0

(
d(x)

)−ατm
(
1 +

Mτ∑
n=1

Dn(x)
(
d(x)

)n)
+O

((
d(x)

)1+Mτ−ατm
)
, x ∈ Ωδ0/2. (15)

PROOF. Following classical results, collected in the final Appendix, one proves that the mth power of the
profile admits a representation as

(
V(x)

)m
= Cm

0

(
d(x)

)−ατm
(
1 +

Mτ∑
n=1

Dn(x)
(
d(x)

)n
+

∞∑
n=Mτ+1

Dn(x)
(
d(x)

)n)
, (16)

where

Dn(x) =

(
m

1

)
Cn(x) +

n∑
i=2

(
m

i

)
Bn−i,i(x), n ≥ 1, (17)

with

Bn−i,i(x)=
n−i∑
j=1

(
i

j

)(
C1(x)

)i−j ∑
ℓ1·γℓ1

+...+ℓj ·γℓj
=n−i+j

γℓ1
+...+γℓj

=j

2≤ℓ1<...<ℓj≤n−i−j+2

{γℓk
}j
k=1⊂{0,1,...,j}

j!

γℓ1 !· . . . ·γℓj !
(
Cℓ1(x)

)γℓ1 · . . . ·
(
Cℓj (x)

)γℓj (18)

for i = 2, 3, . . . , n (see (48) below). In Remark 1 we give explicitly the first coefficients Dn(x). From
the definition of Dn(x) given in (17), we can deduce that the coefficient Cn(x) only appears in the first
term, while in the remaining terms appear powers and products involving some or all previous coefficients
C1(x), C2(x), . . . , Cn−1(x). Therefore, DMτ

is the coefficient of (16) where CMτ
appears for first time

(see (17)). It explains the truncation in (16). Then, we conclude (15) by noting that

Ψm(x; r) =
∞∑

n=Mτ+1

Dn(x)r
n, (x; r) ∈ Ωδ0/2×]0, δ0/2[

verifies Ψm ∈ C
(
Ωδ0/2 × [0, δ0/2]

)
with Ψm(x; r) = O

(
r1+Mτ

)
. 2

Remark 1 Provided Mτ ≥ 4, the first coefficients Dn(x) are given by

D1(x)=

(
m

1

)
C1(x),

D2(x)=

(
m

2

)(
C1(x)

)2
+

(
m

1

)
C2(x),

D3(x)=

(
m

3

)(
C1(x)

)3
+

(
m

2

)
2C1(x)C2(x) +

(
m

1

)
C3(x),

D4(x)=

(
m

4

)(
C1(x)

)4
+

(
m

3

)
3
(
C1(x)

)2
C2(x) +

(
m

2

)(
2C1(x)C3(x) +

(
C2(x)

)2)
+

(
m

1

)
C4(x).

2
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The construction of the leading part of (14) is also very laborious. In particular, we have

Lemma 3 Let us assume Cn ∈ C2(Ωδ0/2). Then there exist a constant A0 and some functions An ∈
C(Ωδ0/2), for which the following expansion

∆pV(x)=Cp−1
0

(
d(x)

)−ατm
(
A0

(
d(x)

)τ
+

max{Mτ−τ,0}∑
n=1

An(x)
(
d(x)

)n+τ
)
+O

((
d(x)

)1+max{Mτ ,τ}−ατm
)

(19)
holds in Ωδ0/2.

PROOF. First of all, we obtain

∇V(x) = C0

(
d(x)

)−(ατ+1)
(
−→
A 0(x) +

Mτ∑
n=1

−→
An(x)

(
d(x)

)n
+

−→
AMτ+1(x)

(
d(x)

)Mτ+1
)

with

−→
An(x) =


−ατ∇d(x), n = 0,

(−ατ + 1)C1(x)∇d(x), n = 1,

(−ατ + n)Cn(x)∇d(x) +∇Cn−1(x), 2 ≤ n ≤ Mτ ,

∇CMτ (x), n = Mτ + 1.

(20)

Now, following again the reasonings of the Appendix, see (51), one has

|∇V(x)|2 = C2
0

(
d(x)

)−2(ατ+1)
(
α2
τ +

2(Mτ+1)∑
n=1

En(x)
(
d(x)

)n)
, (21)

for certain functions En(x). As in (15), we focus the attention on the coefficients En(x), 1 ≤ n ≤ Mτ ,
given by

En(x) =

n∑
j=0

⟨
−→
A j(x),

−→
An−j(x)⟩, 1 ≤ n ≤ Mτ (22)

(see Remark 3 where the first coefficients En(x) are detailed explicitly). Next, from (21), we may write

|∇V(x)|p−2 =
(
|∇V(x)|2

) p−2
2 = Cp−2

0

(
d(x)

)−(ατ+1)(p−2)
Φ

( 2(Mτ+1)∑
n=1

En(x)
(
d(x)

)n−1
)

where

Φ(s) =
(
α2
τ + s d(x)

) p−2
2 = αp−2

τ

∞∑
n=0

(p−2
2

n

)
α−2n
τ sn

(
d(x)

)n
.

As in (16), we apply the extended Villareal formula (see once again the Appendix below) in order to obtain

|∇V(x)|p−2 = Cp−2
0

(
d(x)

)−(ατ+1)(p−2)
αp−2
τ

(
1+

Mτ∑
n=1

Fn(x)
(
d(x)

)n
+

∞∑
n=Mτ+1

Fn(x)
(
d(x)

)n) (23)

for x ∈ Ωδ0 , governed by

Fn(x) =

(p−2
2

1

)
α−2
τ En(x) +

n∑
i=2

(p−2
2

i

)
α−2i
τ Gn−i,i(x), n ≥ 1, (24)

where

Gn−i,i(x)=
n−i∑
j=1

(
i

j

)(
E1(x)

)i−j ∑
ℓ1·γℓ1

+...+ℓj ·γℓj
=n−i+j

γℓ1
+...+γℓj

=j

2≤ℓ1<...<ℓj≤n−i−j+2

{γℓk
}j
k=1⊂{0,1,...,j}

j!

γℓ1 ! · . . . · γℓj !
(
Eℓ1(x)

)γℓ1 · . . . ·
(
Eℓj (x)

)γℓj
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for i = 2, 3, . . . , n
(
see Remark 3 where we give explicitly the first coefficients Fn(x)

)
. Here FMτ is the

term where CMτ appears for first time (see (22) and (24)).
As in the proof of Lemma 2, the coefficient En(x) only appears in the first term of (24), while in the re-

maining terms appear powers and products involving the previous coefficients
{
E1(x),E2(x), . . . ,En−1(x)

}
.

The above calculations lead to

|∇V(x)|p−2∇V(x) = Cp−1
0

(
d(x)

)−(ατ+1)(p−1)
(
− αp−1

τ ∇d(x) +
∞∑

n=1

−→
Hn(x)

(
d(x)

)n)
where

−→
Hn(x) =



αp−2
τ (p− 1)(−ατ + 1)C1(x)∇d(x), n = 1,

αp−2
τ

n∑
j=0

Fn−j(x)
−→
A j(x), 2 ≤ n ≤ Mτ ,

αp−2
τ

Mτ+1∑
j=0

Fn−j(x)
−→
A j(x), n ≥ Mτ + 1,

with
−→
An(x) as in (20) and Fn−j(x) as in (24). Hence

∆pV(x) = Cp−1
0

(
d(x)

)−(ατ+1)(p−1)−1
(
A0 +

∞∑
n=1

An(x)
(
d(x)

)n)
where

An(x) =


αp−1
τ (ατ + 1)(p− 1), n = 0,

αp−2
τ

(
(ατ − 1)(p− 1)

(
ατ (p− 1) + p− 2

)
C1(x)− ατ∆d(x)

)
, n = 1,(

− (ατ + 1)(p− 1) + n
)
⟨
−→
Hn(x),∇d(x)⟩+ div

−→
Hn−1(x), n ≥ 2.

(25)

Since
ατ =

p+ τ

m− p+ 1
⇔ (ατ + 1)(p− 1) + 1 + τ = ατm,

we may conclude (19) by noting that

ΨA(x; r) =
∞∑

n=max{Mτ−τ,0}+1

An(x)r
n+τ , (x; r) ∈ Ωδ0/2×]0, δ0/2[.

verifies ΨA ∈ C(Ωδ0/2 × [0, δ0/2]), with ΨA(x; r) = O(r1+max{Mτ ,τ}). We note that the assumed regu-
larity Cn ∈ C2(Ωδ0/2) will be proved in the next Section. 2

Remark 2 Since |∇d(x)| ≡ 1 near the boundary (see [15]), the coefficient A0 in (25) is independent on
the geometry. On the other hand, we note that all functions An(x), 1 ≤ n ≤ Mτ + 1, depend on the
geometry of Ω through the distance function d(x). More precisely, A1(x) depends on the mean curvature.
Clearly, as expected, coefficients An(x) coincide with those found in [1] for the case p = 2. 2

Remark 3 We illustrate the first three terms of (21), provided Mτ ≥ 3,

E1(x)= 2ατ (ατ − 1)C1(x),

E2(x)= 2ατ

(
(ατ − 2)C2(x)− ⟨∇C1(x),∇d(x)⟩

)
+ (ατ − 1)2

(
C1(x)

)2
,

E3(x)= 2
(
ατ (ατ − 3)C3(x)− ⟨∇C2(x),∇d(x)⟩

)
+2(ατ − 1)C1(x)

(
(ατ − 2)C2(x)− ⟨∇C1(x),∇d(x)⟩

)
and the first two coefficients Fn(x) of (23), provided Mτ ≥ 2,

F1(x) = (p− 2)

(
ατ − 1

ατ

)
C1(x),

F2(x) = (p− 2)

(
(p− 3)

2

(
ατ − 1

ατ

)2 (
C1(x)

)2− 1

ατ
⟨∇C1(x),∇d(x)⟩+

(
ατ − 2

ατ

)
C2(x)

)
.
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Obviously, equality (23) is irrelevant when p = 2 because Fn(x), 1 ≤ n ≤ Mτ , are null functions. 2

Now we can get to the proof of our main result in this section.
PROOF OF THEOREM 1. From equalities (6), (15) and (19) we can write

−∆pV(x) +
(
V(x)

)m − f(x)

=
(
d(x)

)−ατm
[
− Cp−1

0

(
A0

(
d(x)

)τ
+

max{Mτ−τ,0}∑
n=1

An(x)
(
d(x)

)n+τ
)

+
(
Cm

0 − f0
)
+

Mτ∑
n=1

(
Cm

0 Dn(x)− fn
)(
d(x)

)n
+Υ

(
x; d(x)

)]
, x ∈ Ωδ0/2,

(26)

for the remainder
Υ(x; d(x)) = −Cp−1

0 ΨA(x; d(x)) + Cm
0 Ψm(x; d(x))

that verifies
Υ(x; d(x)) = O

(
(d(x))1+Mτ

)
for all x ∈ Ωδ0 . Our goal is clear now: if we make suitable choices of the coefficients C0 and Cn(x) such
that

Cp−1
0

(
A0

(
d(x)

)τ
+

max{Mτ−τ,0}∑
n=1

An(x)
(
d(x)

)n+τ
)
=Cm

0 − f0 +

Mτ∑
n=1

(
Cm

0 Dn(x)− fn
)(
d(x)

)n
, (27)

the equality (26) leads to

−∆pV(x) +
(
V(x)

)m − f(x) =
(
d(x)

)−ατm (
Υ
(
x; d(x)

))
,

whence (10) follows.
In order to do it, the value of C0 is obtained by canceling the constant term in expression (27), i.e.

Cm
0 − f0 = 0 if τ > 0 and Cm

0 − Cp−1
0 αp−1

0 (α0 + 1)(p− 1)− f0 = 0 if τ = 0 (28)

(see (25)). Therefore, C0 is independent on the geometry and it is the unique coefficient when Mτ = 0,
i.e. m ≥ 2p− 1 + τ . We note that when τ = 0 we only require f0 ≥ 0. After obtaining this value C0, the
rest of coefficients Cn(x) are determined iteratively from the relation (27) making a balance between the
power of d(x) by canceling the respective coefficients. 2

Remark 4 By some conveniences, we may introduce the one–one function ϕ : [0, 1[→ R+ ∪ {0}

ϕ(t) =

(
(m+ 1)(p− 1)pp−1

(m+ 1− p)p(1− t)

) m
m+1−p

t.

for which (28) becomes

C0 =


f

1
m
0 if τ > 0,(

(m+ 1)(p− 1)pp−1

(m+ 1− p)p(1− ϕ−1(f0))

) 1
m+1−p

if τ = 0.
(29)

2

As it was pointed out in Introduction, if 2p − 1 + τ ≤ p the expansion only consists of a unique term
governed by C0 obtained from (29). When p−1 < m < 2p−1+τ , the rest of coefficients Cn are obtained
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in order to (27) holds. They depend on the type of explosion, high or low, based on the two possible parts
of the explosive expansion

V(x) = C0

(
d(x)

)−ατ

(
1 +

the non–geometrical part︷ ︸︸ ︷
min{τ,Mτ}∑

n=1

Cn(d(x))
n +

Mτ∑
n=min{τ,Mτ}+1

Cn(x)(d(x))
n

︸ ︷︷ ︸
the geometrical part

)
.

Thus, the expansion has a possible first part with high explosion and a possible second part whose explo-
siveness is low due to the influence on the nonlinear diffusion neglected in the previous one. In some sense,
the influence of the diffusion is transferred to the influence of the geometry of the domain.
A. The possible non–geometrical part. It only appears when τ > 0 and consequently we will require
condition (9). Then we choose C1, . . . ,Cmin{τ,Mτ}−1 from the equalities

− Cp−1
0 · 0 + Cm

0 Dn(x) = fn, 1 ≤ n ≤ min{τ,Mτ} − 1. (30)

Certainly, choice n = 0 is also available denoting D0(x) ≡ 1 and it implies

C0 = f
1
m
0

(see (28)). Hence, in the comments of this part, we may assume Mτ > 0 or min{τ,Mτ} ≥ 1. The
representation (17) and the equality (27) lead to

Cn =
1

mf0

(
fn − f0

n∑
i=2

(
m

i

)
Bn−i,i

)
, 1 ≤ n ≤ min{τ,Mτ} − 1. (31)

From the properties of Dn, the coefficients Cn, 1 ≤ n ≤ min{τ,Mτ} −1, are constants independent on Ω.
We note that the formulas of Remark 1 leads to

C1 =
1

mf0
f1 and C2 =

1

mf0

(
f2 −

m− 1

2

1

mf0
f2
1

)
, (32)

provided min{τ,Mτ} ≥ 3.
The last coefficient of this part, Cmin{τ,Mτ}, is also independent on the geometry, but it admits two possi-
bilities:
i) If 0 < Mτ < τ the expression (30) also provides the last coefficient of the whole explosive expansion
given by

−Cp−1
0 · 0 + Cm

0 DMτ (x) = fMτ ,

whence

CMτ =
1

mf0

(
fMτ − f0

Mτ∑
i=2

(
m

i

)
BMτ−i,i

)
. (33)

We recall that by construction coefficient CMτ is the last coefficient of explosive function (11).
ii) If 0 < τ ≤ Mτ from (27) it follows

−Cp−1
0 A0 +Cm

0 Dτ = fτ ,

whence

Cτ =
1

mf0

(
fτ +

(p+ τ)p−1(m+ τ + 1)(p− 1)

(m− p+ 1)p
f

p−1
m

0 − f0

τ∑
i=2

(
m

i

)
Bτ−i,i

)
. (34)

Obviously, Cτ is the last coefficient of the whole explosive expansion of the profile function (11) only when
Mτ = τ . In general, condition Mτ = τ implies{

(m− p)τ = 2p−m− 1 if ατ is an integer number,

(m− p)τ > 2p−m− 1 otherwise.
(35)
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B. The possible geometrical part. This part only is possible when τ < Mτ , τ ≥ 0, because otherwise it
is the non–geometrical part. Consequently min{τ,Mτ} = τ .
The study is completed by choosing the coefficients Cτ+1(x), . . . ,CMτ (x), τ ≥ 0, from equalities

− Cp−1
0 An−τ (x) + Cm

0 Dn(x) = fn, τ + 1 ≤ n ≤ Mτ , (36)

with Mτ > 0, thus p− 1 < m < 2p+ τ − 1.
By means of An(x), τ + 1 ≤ n ≤ Mτ , these coefficients depend on the geometry of Ω. In particular,
Cτ+1(x) depends only on the mean curvature (see Remark 5 below).
Certainly, when τ > 0, from the properties of An(x) and Dn(x), one has the explicit formula

Cn(x) =
1

mf0

(
fn +Cp−1

0 An−τ (x)− f0

n∑
i=2

(
m

i

)
Bn−i,i(x)

)
, τ + 1 ≤ n ≤ Mτ . (37)

Whenever τ = 0 condition (36) becomes

− Cp−1
0 An(x) + Cm

0 Dn(x) = fn, 1 ≤ n ≤ M0. (38)

From definition of Dn(x) (see (17)) and An(x) (see (25)), the relative coefficients Cn(x) chosen in (38)
also admit an explicit and hard expression as

AnCn(x) = F
(
m, p, f0, . . . , fn,C0,C1(x), . . . ,Cn−1(x)

)
, 1 ≤ n ≤ M0,

where
An

.
= mCm

0 − αp−2
0 (p− 1)(−α0 + n)

(
− (α0 + 1)(p− 1) + n

)
Cp−1

0

= Cp−1
0 αp−2

0 (p− 1)
[
(α0 + 1)

(
p+ (p− 1)n

)
− n(−α0 + n)

]
+mf0

is a positive constant due to −α0 + n ≤ −α0 +M0 < 0.
The above construction shows that the coefficients Cn are constants or belong to C2(Ωδ0/2)∩L∞(Ωδ0/2),

due to the regularity of the distance function.

Remark 5 As it has been pointed out several times, the obtainment of Cn(x) requires very tedious com-
putations. For example, for 0 ≤ τ < Mτ , one obtains

Cτ+1(x) =
1

mf0

(
fτ+1 − f0

τ+1∑
i=2

(
m

i

)
Bτ+1−i,i(x)

+f
p−1
m

0 αp−2
τ

[
(ατ − 1)(p− 1)

(
ατ (p− 1) + p− 2)C1(x)− ατ∆d(x)

])
.

On the other hand, when τ = 0 the two first coefficients for f0 = 0 are

C0 =

(
(m+ 1)(p− 1)pp−1

(m− p+ 1)p

) 1
m−p+1

and C1(x) = η(m, p)
(
γ(m, p)f1 −∆d(x)

)
,

where 
η(m, p) =

α0

(p− 1)
[
α0(m+ p+ 1) + p− 2

] =
p

2(p− 1)
[
p(m+ 1)− (m− p+ 1)

] ,
γ(m, p) =

1

Cp−1
0 αp−1

0

=

(
(m− p+ 1)m+1

(m+ 1)(p− 1)pm

) p−1
m−p+1

.

Obviously, for p = 2, the coefficients C0 and C1(x) coincide with those values already obtained for the
Laplacian operator (see [1] or [8]). 2
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Remark 6 We summarize the global obtainment of the coefficients as follows. First of all, the constant
C0, obtained from (28), is the unique coefficient in the expansion whenever 2p+ τ − 1 ≤ m, i.e.Mτ = 0.
Otherwise, when p− 1 < m < 2p+ τ − 1 all coefficients are given by the table

if 0 < τ ≤ Mτ one has

(29)︷︸︸︷
C0

(31)︷ ︸︸ ︷
C1, . . . ,Cτ−1

(37)︷︸︸︷
Cτ

(37)︷ ︸︸ ︷
Cτ+1, . . . ,CMτ ,

if 0 < Mτ < τ one has

(29)︷︸︸︷
C0

(31)︷ ︸︸ ︷
C1, . . . ,CMτ−1

(33)︷︸︸︷
CMτ ,

if 0 = τ < M0 one has

(29)︷︸︸︷
C0

(38)︷ ︸︸ ︷
C1, . . . ,CM0−1

(38)︷︸︸︷
CM0

.

(39)

2

Remark 7 The presence of the geometry in the expansion is derived exclusively from the functions An(x)
(see (25) and (36)). Then, fixed p and m, for different values of τ the equation (36) can become (30).
Hence, fixed an interior structure of the differential operator, p and m, the geometrical properties can appear
in different localizations of the explosive expansion. These geometrical properties may even disappear. See
the Example 2 ii), at the end of Section 3, to an illustration of the above comments. 2

3 The boundary asymptotic expansion of the large solution
In this section, we consider the perturbed boundary profile function

V∓δ(x) = C0

(
d(x)∓ δ

)−ατ

(
1 +

Mτ∑
n=1

Cn(x)
(
d(x)∓ δ

)n)
defined for x ∈ Ω such that d(x)∓ δ > 0 with δ > 0 small enough.

Proposition 1 Under assumptions of Theorem 1, the following behavior

−∆pV∓δ(x) +
(
V∓δ(x)

)m − f(x) =
(
d(x)

)−ατm
O
((

d(x)
)1+Mτ

)
holds.

PROOF. The choice of the coefficients Cn(x) in Theorem 1 leads to

Cp−1
0

(
A0

(
d(x)∓δ

)τ
+

max{Mτ−τ,0}∑
n=1

An(x)
(
d(x)∓δ

)n+τ
)

= Cm
0 −f0+

Mτ∑
n=1

(
Cm

0 Dn(x)−fn
)(
d(x)∓δ

)n
(see (27)). Consequently, since

−∆pV∓δ(x) +
(
V∓δ(x)

)m − f(x)

=
(
d(x)∓ δ

)−ατm
[
− Cp−1

0

(
A0

(
d(x)∓ δ

)τ
+

max{Mτ−τ,0}∑
n=1

An(x)
(
d(x)∓ δ

)n+τ
)

+
(
Cm

0 − f0
)
+

Mτ∑
n=1

(
Cm

0 Dn(x)− fn
)(
d(x)∓ δ

)n
+Υ

(
x; d(x)∓ δ

)
+ Ξ(x;∓δ)

]
(see (26)) then

−∆pV∓δ(x)+
(
V∓δ(x)

)m−f(x) =
(
d(x)∓δ

)−ατm(
Υ
(
x; d(x)∓δ

)
+Ξ(x;∓δ)

)
, x ∈ Ωδ0/2, (40)
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for the remainders
Υ(x; d(x)∓ δ) = −Cp−1

0 ΨA(x; d(x)∓ δ) + Cm
0 Ψm(x; d(x)∓ δ),

Ξ(x;∓δ) =

(
f0 +

Mτ∑
n=1

fn
(
d(x)∓ δ

)n)−
(
d(x)∓ δ

d(x)

)ατm (
f0 +

Mτ∑
n=1

fn
(
d(x)

)n)
,

(41)

that verify
lim
δ→0

Υ(x; d(x)∓ δ) = O
(
(d(x))1+Mτ

)
and lim

δ→0
Ξ(x;∓δ) = 0

for all x ∈ Ωδ0 . 2

For future purposes it will be very useful to rewrite (40) as

−∆pV∓δ(x)+
(
V∓δ(x)

)m − f(x) =
(
d(x)∓ δ

)−ατm
(
Pτ (C0)+Υ

(
x; d(x)∓ δ

)
+Ξ(x;∓δ)

))
(42)

due to C0 is the positive root of polynomial

Pτ (µ) =

{
µm − αp−1

0 (α0 + 1)(p− 1)µp−1 − f0 if τ = 0,

µm − f0 if τ > 0,

(see (28)).

With all previous results, we get to the proof of our main result.
PROOF OF THEOREM 2. In order to apply a comparison argument, we consider the modifications

W∓δ,±ε(x) = C0

(
d(x)∓ δ

)−ατ

(
1± ε+

Mτ∑
n=1

Cn(x)
(
d(x)∓ δ

)n)
,

where ε > 0 will be sent to 0. So, we construct the perturbed polynomials

Pτ,±ε(µ) =

{ (
(1± ε)µ

)m − αp−1
0 (α0 + 1)(p− 1)

(
(1± ε)µ

)p−1 − f0 if τ = 0,(
(1± ε)µ

)m − f0 if τ > 0,

for which
Pτ,+ε(C0) > 0 and Pτ,−ε(C0) < 0.

The reasoning is based on to prove that the functions W−δ,+ε(x) and W+δ,−ε(x) are respectively super and
subsolutions in a thin strip near the boundary. Arguing as in Theorem 1, we have

−∆pW−δ,+ε(x)+
(
W−δ,+ε(x)

)m−f(x) =
(
d(x)− δ

)−ατm
(
Pτ,+ε(C0)+Υ

(
x; d(x)− δ

)
+Ξ(x;−δ)

)
(see (42)). We recall that Pτ,+ε(C0) is a positive constant independent on x and δ, consequently (41) proves
the inequality

Pτ,+ε(C0) + Υ
(
x; d(x)− δ

)
+ Ξ(x;−δ) > 0

in a parallel strip δ < d(x) < δ1, provided 2δ1 < δ0 small enough. Therefore, the inequality

−∆pW−δ,+ε(x) +
(
W−δ,+ε(x)

)m
> f(x), δ < d(x) < δ1,

holds. Then, Comparison Principle leads to

u(x)−W−δ,+ε(x) ≤ sup
d(y)=δ1

(
u(y)−W−δ,+ε(y)

)
, δ < d(x) < δ1

or

u(x)

W−δ,+ε(x)
− 1 ≤

sup
d(y)=δ1

(
u(y)−W−δ,+ε(y)

)
W−δ,+ε(x)

, δ < d(x) < δ1.
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Now, in short, sending δ1 → 0 and then ε → 0, we deduce

lim sup
d(x)→0

u(x)

V(x)
≤ 1,

where V is our master function given by (8). (In fact, for a more precise way to obtain this inequality we
send δ → 0, after d(x) → 0, next δ1 → 0 and finally ε → 0.)
Analogously, one obtains

−∆pW+δ,−ε(x)+
(
W+δ,−ε(x)

)m−f(x) =
(
d(x)+δ

)−ατm
(
Pτ,−ε(C0)+Υ

(
x; d(x)+δ

)
+Ξ(x; +δ)

)
.

Since
Pτ,−ε(C0) + Υ

(
x; d(x) + δ

)
+ Ξ(x; +δ) < 0

in a parallel strip 0 < d(x) < δ1, provided 2δ1 < δ0 small enough, inequality

−∆pW+δ,−ε(x) +
(
W+δ,−ε(x)

)m
< f(x), 0 < d(x) < δ1,

holds. Now, by comparing, it follows

1− u(x)

W+δ,−ε(x)
≤

sup
d(y)=δ1

(
W+δ,−ε(y)− u(y)

)
W+δ,−ε(x)

, 0 < d(x) < δ1.

As above, sending δ → 0 and then ε → 0, we conclude

lim sup
d(x)→0

u(x)

V(x)
≤ 1 ≤ lim inf

d(x)→0

u(x)

V(x)
.

2

Remark 8 Certainly Theorem 2 extends and generalizes Theorem 3.8 of [11]. When p = 2 Theorem 2
coincides with Theorem 2 of [1] and it extends the results obtained in [5], [6] or [8] where only the second
explosive term was considered for f ≡ 0. 2

Theorem 2 can be illustrated as follows

Example 1 (Low explosive sources) This is an example without non diffused part in the expansion
of the large solutions. For instance, let us suppose

3p− 2

2
≤ m < 2p− 1 (43)

(or equivalently 1 < α0 ≤ 2), for which M0 = 1 and

f(x) = f1
(
d(x)

)− pm
m−p+1+1

, f1 ≥ 0.

If ∂Ω ∈ C4, then we obtain

u(x) = C0

(
d(x)

)− p
m−p+1

(
1 + η(m, p)

[
γ(m, p)f1 −∆d(x)

]
d(x)

)
+ o

((
d(x)

)m−2p+1
m−p+1

)
, (44)

where C0, η(m, p) and γ(m, p) are given in Remark 5. This example extends the results of [5], [6] or [8]
obtained for p = 2 and f ≡ 0. 2

Example 2 (High explosive sources)

i) In order to simplify, we begin by constructing an example without geometrical part in the expansion. For
instance, the equality τ = Mτ requires

p(2 + τ)− 1

τ + 1
< m and m ∈ IMτ
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see (35) and Lemma 1. In particular, for the choice τ = 1 both conditions hold when

3p

2
< m < 2p.

Then, let us consider
f(x) =

(
d(x)

)−α1m(
f0 + f1d(x)

)
, f0 > 0

where
α1 =

p+ 1

m− p+ 1

verifies

1 < α1 <
2(p+ 1)

p+ 2
.

Theorem 2 proves that the expansion of all explosive terms of the large solution is

u(x) = f
1
m
0

(
d(x)

)−α1

(
1 +

1

mf0

(
f1 +

(p+ 1)p−1(m+ 2)(p− 1)

(m− p+ 1)p
f

p−1
m

0

)
d(x)

)
+ o

((
d(x)

)−α1+1
)
,

provided ∂Ω ∈ C4 (see (5), (32), (34) and (35)). Clearly, both coefficients are independent on the geometry
of Ω.

ii) Finally, we construct an example where the expansion has one coefficient dependent on Ω plus two
coefficients uniform and independent on Ω; therefore τ = 1 and M1 + 1 = 3. So, Lemma 1 enables us to
consider

4p− 2

3
≤ m <

3p− 1

2
(45)

(or equivalently 2 < α1 ≤ 3) and, for simplicity, we suppose

f(x) = f0
(
d(x)

)− (p+1)m
m−p+1

(
1 + f1d(x) + f2

(
d(x)

)2)
, f0 > 0.

Then the expansion of all explosive terms of the large solution is

u(x) = C0

(
d(x)

)− p+1
m−p+1

(
1 + C1d(x) + C2(x)

(
d(x)

)2)
+ o

((
d(x)

) 2m−3p+1
m−p+1

)
, (46)

for coefficients

C0 = f
1
m
0 (independent on the nonlinear diffusion)

C1 =
1

mf0

(
f1 + αp−1

1 (α1 + 1)(p− 1)f
p−1
m

0

)
(dependent on the nonlinear diffusion)

and

C2(x) =
1

mf0

(
f2−f0

m(m− 1)

2
C2

1+f
p−1
m

0 αp−2
1

(
(α1−1)(p−1)(α1(p−1)+p−2)C1−α1∆d(x)

))
,

where α1 =
p+ 1

m− p+ 1
provided ∂Ω ∈ C6 (see Remarks 1 and 5).

One last comment derived from conditions (43) and (45). Since
3p− 1

2
< 2p− 1,

3p− 2

2
<

4p− 2

3
, provided 1 < p < 2,

implies the inclusion[
4p− 2

3
,
3p− 1

2

[
⊆

[
3p− 2

2
, 2p− 1

[
, provided 1 < p < 2,
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we note that for every

m ∈
[
4p− 2

3
,
3p− 1

2

[
, 1 < p < 2,

and ∂Ω ∈ C4, the first geometrical property appears in the coefficient C1(x) of the expansion for the low
explosion source

f(x) = f1
(
d(x)

)− pm
m−p+1+1

, f1 ≥ 0

(see (44)). However, if ∂Ω ∈ C6 and we change to the high explosion source

f(x) = f0
(
d(x)

)− (p+1)m
m−p+1

(
1 + f1d(x) + f2

(
d(x)

)2)
, f0 > 0,

that first geometrical property appears now in the C2(x) coefficient (see (46)), while the coefficient C1 is
independent n the geometry. The importance of the kind of sources was commented in Remark 7. 2

Appendix: Expanding the mth power of the asymptotic profile
In Appendix A of [1] the old formula of Federico Villarreal (1850–1923) on the power of polynomials

was extended by means of an explicit expression. It was applied in order to obtain representations of the
power of polynomials. Here we sketch the results of Appendix B of [1] related to the formal expansion

V(x) = C0

(
d(x)

)−ατ

(
1 +

Mτ∑
n=1

Cn(x)
(
d(x)

)n)
for which (

V(x)
)m

= Cm
0

(
d(x)

)−ατm
Φ

( Mτ∑
n=1

Cn(x)
(
d(x)

)n−1
)
,

where
Φ(s) =

(
1 + sd(x)

)m
.

Applying Taylor expansion of Φ(s) one obtains

(
V(x)

)m
= Cm

0

(
d(x)

)−ατm
∑
n≥0

(
m

n

)( Mτ∑
k=1

Ck(x)
(
d(x)

)k−1
)n(

d(x)
)n

.

On the other hand, we may write

( Mτ∑
k=1

Ck(x)
(
d(x)

)k−1
)n

=

(Mτ−1∑
k=0

Ck+1(x)
(
d(x)

)k)n

=

(Mτ−1)n∑
i=0

Bi,n(x)
(
d(x)

)i
(47)

where

Bi,n(x) =



(
C1(x)

)n
, i = 0,

1

iC1(x)

i−1∑
ℓ=0

(
(i− ℓ)(n+ 1)− i

)
Ci−ℓ+1(x)Bℓ,n(x), 1 ≤ i ≤ Mτ − 1,

1

iC1(x)

i−1∑
ℓ=i−Mτ+1

(
(i− ℓ)(n+ 1)− i

)
Ci−ℓ+1(x)Bℓ,n(x), Mτ ≤ i ≤ (Mτ − 1)n

(for details see [1, Appendix A]).
In general, by means of a transfinite induction argument we may adjust explicit Villarreal formula (see

now [1, Theorem 4]) in order to obtain the explicit expression of Bi,n(x) for i ∈ {1, 2, . . . , n} (see also
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(18)). Then one has

(
V(x)

)m
= Cm

0

(
d(x)

)−ατm
∑
n≥0

(
m

n

) (Mτ−1)n∑
i=0

Bi,n(x)
(
d(x)

)i+n

= Cm
0

(
d(x)

)−ατm
(
1 +

∞∑
n=1

Dn(x)
(
d(x)

)n) (48)

where

Dn(x) =
n∑

i=1

(
m

i

)
Bn−i,i(x), for all n. (49)

Choosing n = 1 in (47) we deduce

Bi,1(x) = Ci+1(x), 0 ≤ i ≤ Mτ−1,

so that, (49) becomes

Dn(x) =

(
m

1

)
Cn(x) +

n∑
i=2

(
m

i

)
Bn−i,i(x), 1 ≤ n ≤ Mτ , (50)

whence, in (50), each Cn(x), 1 ≤ n ≤ Mτ , does not appear in Bn−i,i(x), i ̸= 1. Certainly all coefficients
Cn(x), 1 ≤ n ≤ Mτ , are involved in the other Dn(x), n ≥ Mτ + 1.
Clearly, the Taylor expansion is finite when m is an integer number. In this case, representation (48)
becomes (

V(x)
)m

= Cm
0

(
d(x)

)−ατm
(
1 +

m(Mτ−1)∑
n=1

Dn(x)
(
d(x)

)n) (51)

where coefficients Dn(x) are given in (49).
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